HONEYWELL EMISSIONS MANAGEMENT

N. RAMESH MURUGAN PRODUCT DIRECTOR, SUSTAINABILITY⁺ EMISSIONS MANAGEMENT

09-MAY-2024

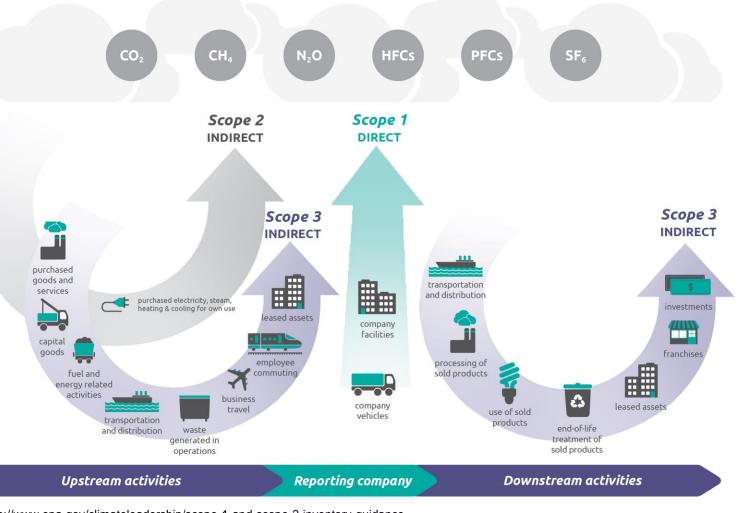
Honeywell

UNDERSTANDING GHG AND CHALLENGES

HONEYWELL EMISSIONS MANAGEMENT

DIRECT MEASUREMENT TECHNOLOGIES

SUSTAINABILITY+ DIGITAL PLATFORM


FLARE INTELLIGENCE - AI USE CASE

Honeywell Confidential - © 2024 by Honeywell International Inc. All rights reserved.

TYPES OF GHG EMISSIONS

- Scope 1: Direct emissions from a company's owned or controlled sources. Common examples include fuel combustion at company facilities or in company-owned cars.
- Scope 2: Indirect emissions from the generation of purchased energy. Purchased energy includes purchased electricity, steam and heating/cooling.
- Scope 3: Indirect emissions (not included in scope 2) that occur in the value chain of the reporting company.

SOURCES OF GHG EMISSIONS

COMBUSTION

Emissions result from combustion of fuels in stationary and mobile sources, e.g., Boilers, Furnaces, Turbines, Trucks, ships, Airplanes.

FLARING Process of burning excess natural gas at the production well and safely regulating pressure in chemical plants.

VENTING & PROCESS

Emissions result from venting of natural gas into the atmosphere and manufacturing or processing of chemicals and materials.

S

SCOPE

FUGITIVE

Emissions result from intentional or unintentional releases, e.g., equipment leaks from joints, seals, packing, and gaskets.

Emissions from the generation of Purchased Electricity that is consumed in its owned or controlled equipment or operations

HEATING & COOLING

Emissions from the generation of Purchased heating and cooling that is consumed in its owned or controlled equipment or operations

UPSTREAM & DOWNSTREAM

Upstream emissions come from the production of your business's products or services while downstream emissions come from their use and disposal.

SCOPE

CHALLENGES IN ENERGY AND EMISSIONS MANAGEMENT

USER

CHALLENGES

Calculate energy & emissions footprint in spreadsheet.

Reconcile data between engineering calculations and

Manual data collection from multiple sources.

actual monitoring.

Process / HSE Engineer

Plant / Sustainability Manager

Chief Sustainability Officer / CEO / CFO

- Lack of Proactive Insights to minimize energy losses and emissions.
- Do not know where to start net zero journey & how to prioritize projects.
- **No easy way** to monitor emissions status against environmental permit regulations.
- Limited visibility of enterprise-wide GHG emissions.
- Lack of traceability for managing & analyzing nonconformance compliance.
- **Difficult to perform** manual reporting & audit compliance.

OUTCOME EXPECTED

- Automated data collection and energy & emissions calculation.
- Simplified data wrangling & reconciliation.
- **Near real-time** energy & emissions insights & enable closed loop optimization.
- Ability to provide blueprint. Deliver what-if scenarios & expert guidance workflow.
- **Tool to** understand the economic and environmental impact of carbon emissions.
- **Provide standardized**, Interoperable, system agnostic, enterprise-wide energy & emissions monitoring.
- Build Single System of Energy & Emissions Record.
- Streamline reporting and audit compliance process.

5

Honeywell

OVERCOMING EMISSIONS CHALLENGES THE PATH TO NET ZERO

MEASURE

Automated Near Real-Time Emissions Coverage

Visualization Energy Efficiency & Honeywell Optimization **Rebellion Gas** (i.e., Asset Performance; Cloud Imaging Digital Twin; Combustion **Third-Party Data** Control, Flare Analytics, (i.e. satellite, Emissions and drone/aircraft. **Reporting Solutions**) LDAR) Hydrogen • Honeywell (H_2) transition Versatilis™ Carbon Capture Signal Scout™ (CCUS) Energy Storage Renewable Fuels Zero Routine Flaring Honeywell Forge Sustainability⁺ for Industrials | Emissions Management Emissions 360 Outcome and KPI **Based Service** Program

MONITOR & REPORT

Source, Site, Region and

Enterprise-Level Trending and

REDUCE

Emissions Actions

Enable Automated and Manual

REDUCTION PROGRAMS, INCLUDING E360 ACTS AS FEEDBACK LOOP

End-To-End Emissions Management & Decarbonization Solutions

AI-POWERED HONEYWELL EMISSIONS MANAGEMENT SOLUTIONS

Source & site emission sensing with "top-down" measurements

Detect leaks in real-time

"bottom-up" measurements

Detect leaks in real-time

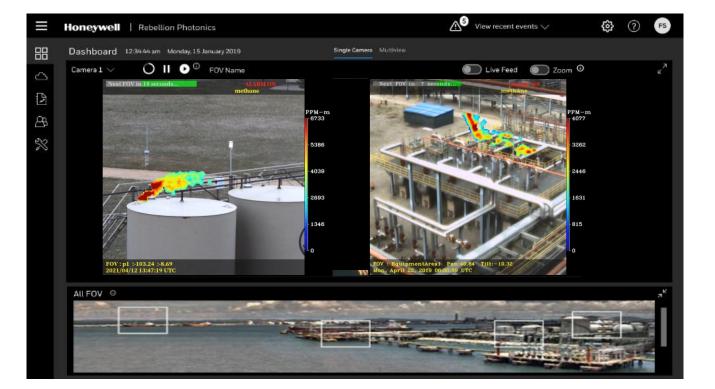
Enterprise Sustainability data lake Harmonize disparate data sources

Holistic, near real-time view of emissions

Rebellion Gas Cloud Imaging Camera

Honeywell Forge Sustainability* Emissions Management - Emissions Analytics

State-of-the-art Artificial Intelligence Technologies in Emissions Management


Versatilis[™] Signal Scout[™] IOT Sensor

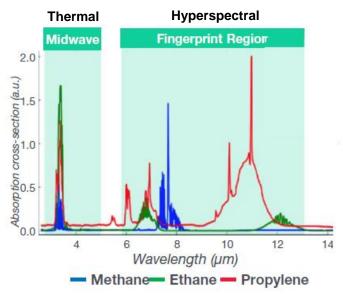
Honeywell

REBELLION GAS GLOUD IMAGING CONTINUOUS VISUAL EMISSIONS MONITORING

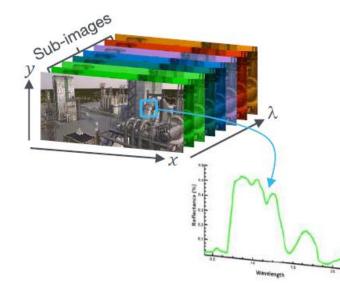
CH₄ EMISSION EVENT AT TANK BATTERY

- Rebellion capturing a storage tank methane emission
- The leak source, size and direction is detected for the operator to diagnose remotely via the live dashboard

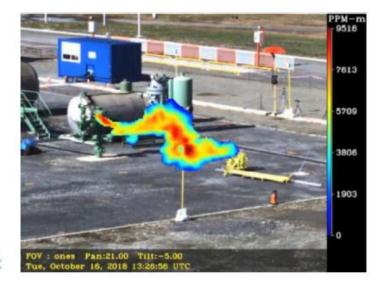
H₂S+CH₄ EMISSION DURING ROUTINE MAINTENANCE


- Rebellion capturing an emission during routine maintenance
- The fence-line point sensors did not detect the large gas plume rising over workers on site due to their inherent limitations with rising gas plumes

Identify problems Operators don't even know exist!


REBELLION GAS CLOUD IMAGING CAMERA

PHYSICS OF THE GCI SYSTEM


GAS FINGERPRINT IDENTIFICATION

HYPERSPECTRAL ACCURACY

PROPORIETRY ALGORITHMS

Rebellion utilizes the **fingerprint region** to identify gases and **minimize false alarms** unlike conventional thermal imaging cameras which cannot identify gas signatures

Full snapshot hyperspectral data continuously collected for each pixel in field of view for greater accuracy Proprietary algorithms convert hyperspectral data to a visual gas cloud display and then overlay on a live video feed for remote diagnosis

Proprietary Hyperspectral Technology Enables Continuous Monitoring

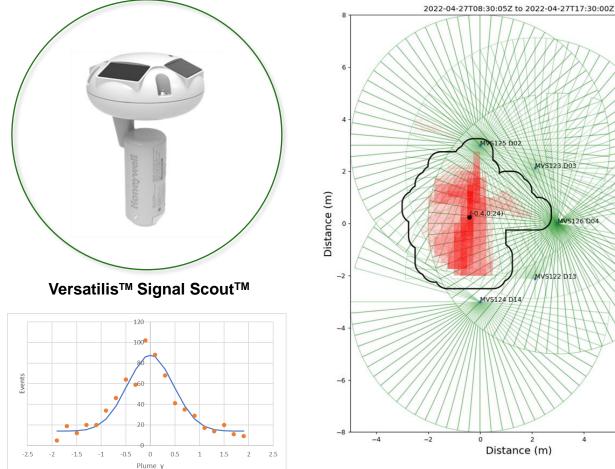
Honeywell

VERSATILISTM SIGNAL SCOUTTM

Sensing parameters Methane (50-1M ppm), Temperature, Humidity, Pressure

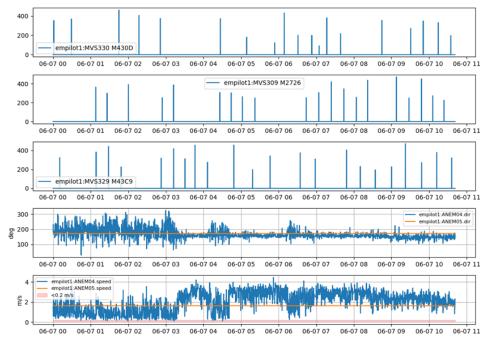
Certified for Hazardous Area Operation

Hazloc certs: IECEx, ATEX Exi-a, C1D1 and Marine


Solar Powered with Battery backup

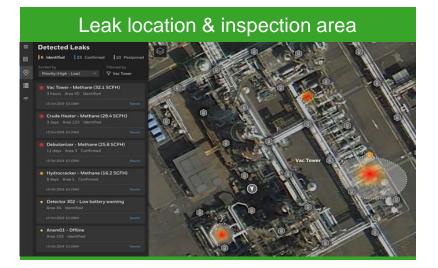
No cables required for installation, low maintenance

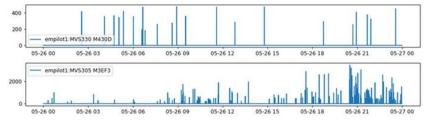
IIoT Communications Utilizes LoRA for rapid and low-cost communications

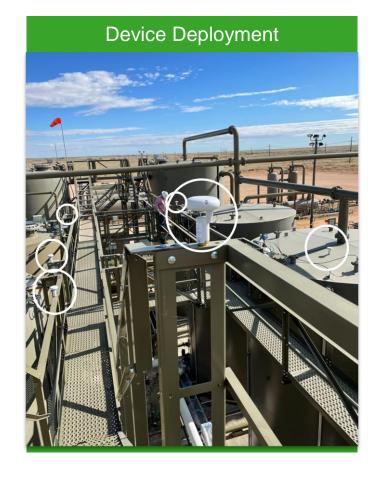

VERSATILISTM SIGNAL SCOUTTM

PROACTIVE LEAK DETECTION WITH SENSORS

MVS123 D03 MVS126 D04 MVS122 D1 MVS124 D14 Distance (m)


A swarm of low-power, fast, very sensitive gas sensors, positioned adjacent to potential emission sources, feeding data to Sustainability⁺ Emissions Management software through a wireless LoRa interface, where Analytics correlate time-series methane events wind speed and -direction data to triangulate the leak location and quantify the Emissions.

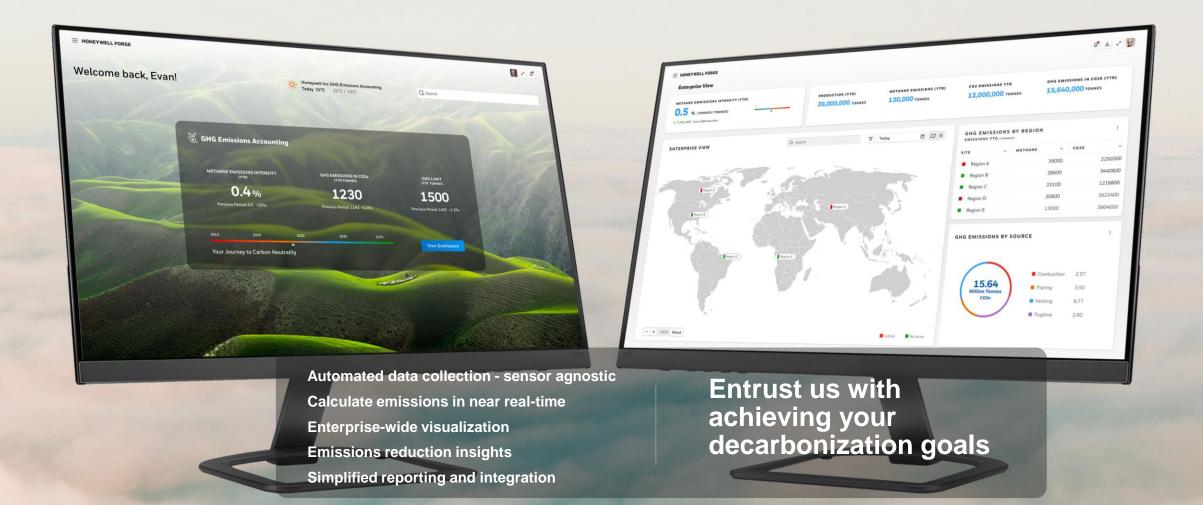

Detect a leak of 100 l/h at 10 m distance


Honeywell

SITE EXAMPLE AND FINDINGS

FUGITIVE

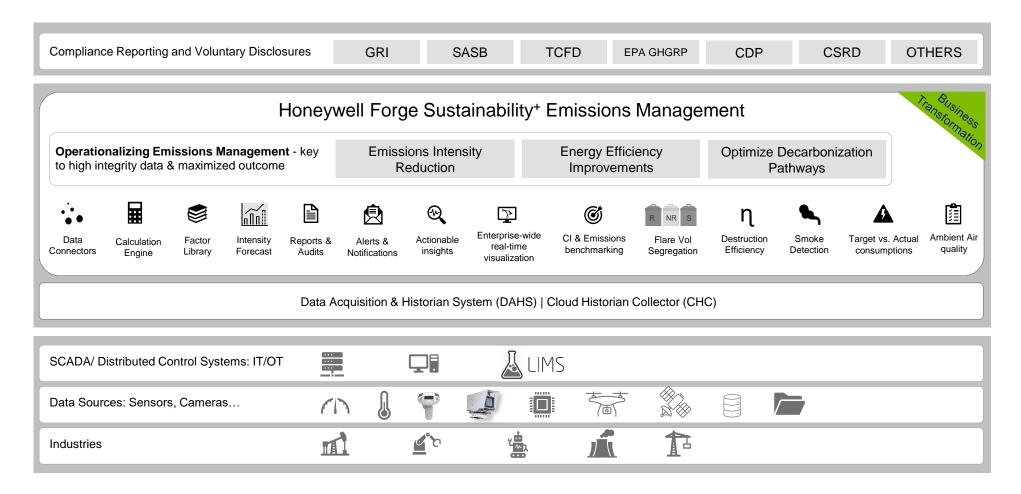
Industry first breakthrough with hazardous area certified devices

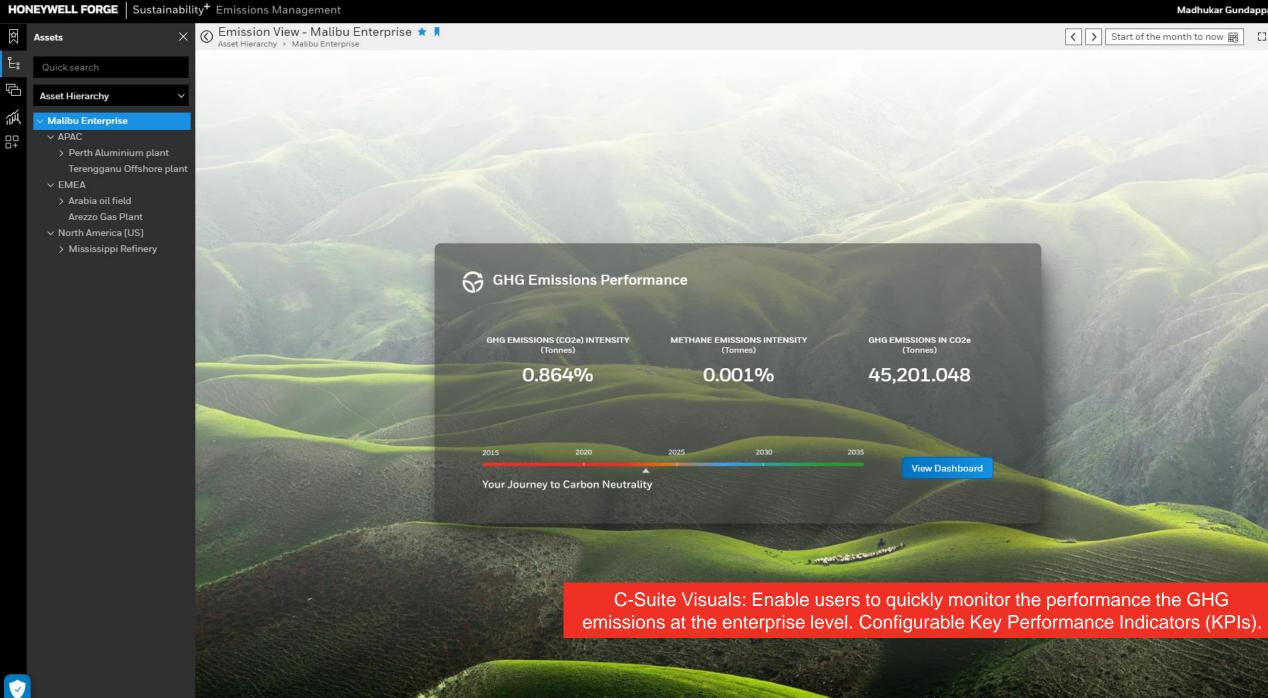


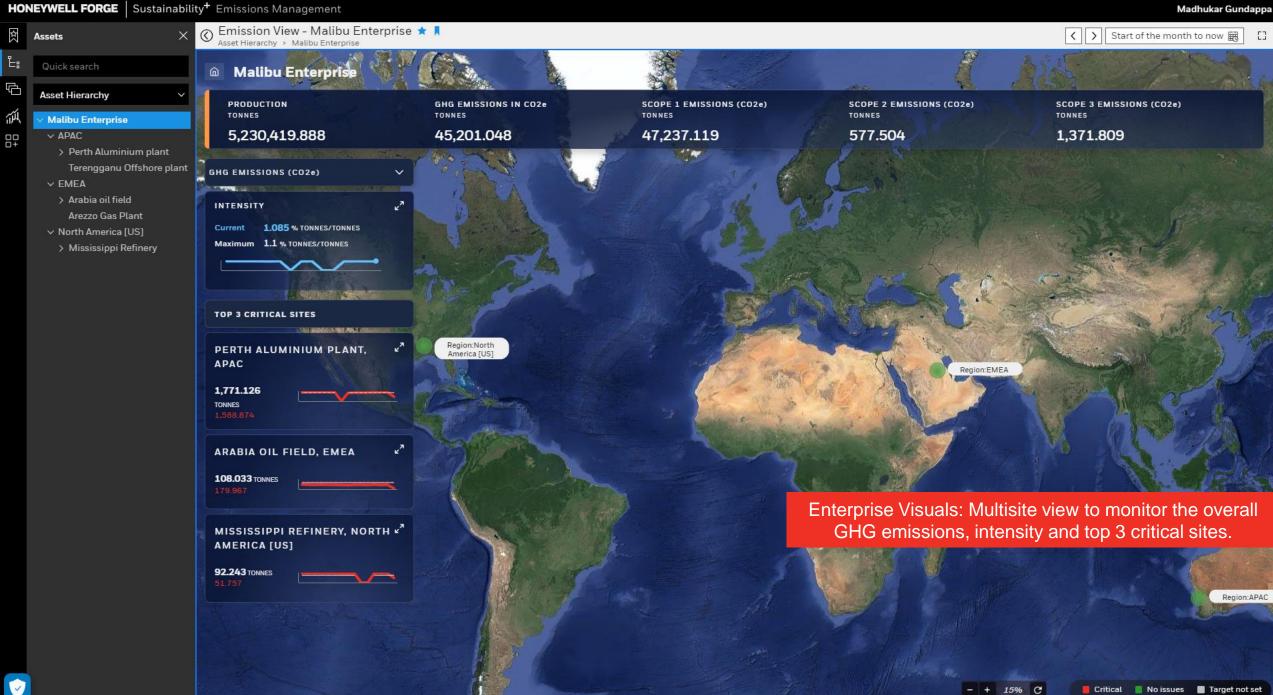
SUSTAINABILITY⁺ EMISSIONS MANAGEMENT

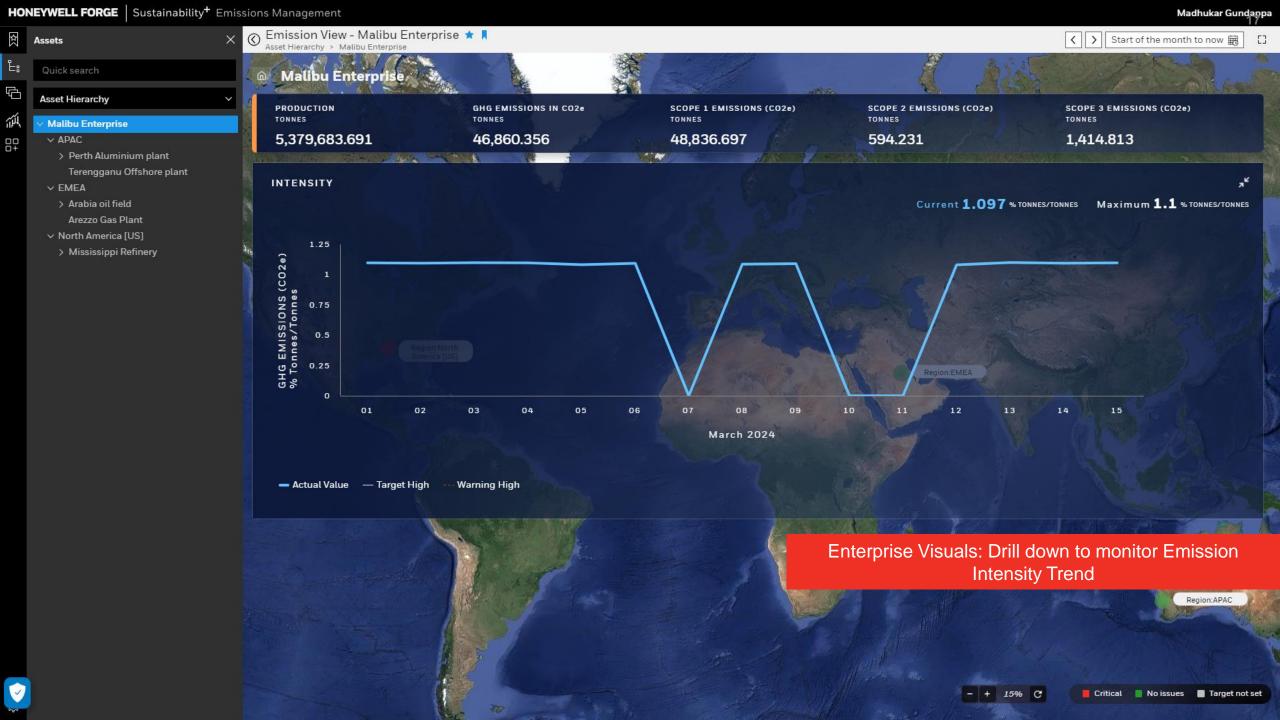
Measure, Monitor, Reduce & Report.

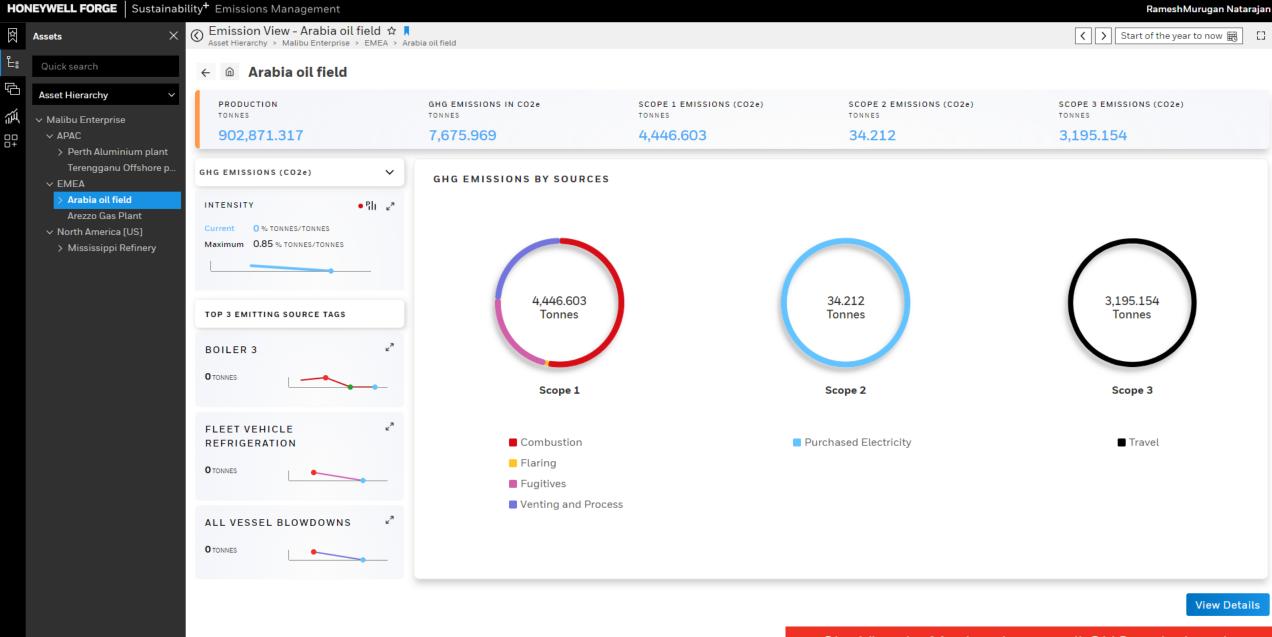
Honeywell presents the next generation of Enterprise Emissions application for accurate scope 1 & 2 GHG accounting, near real-time enterprise-wide visualization & simplified reporting to drive your decarbonization goals.

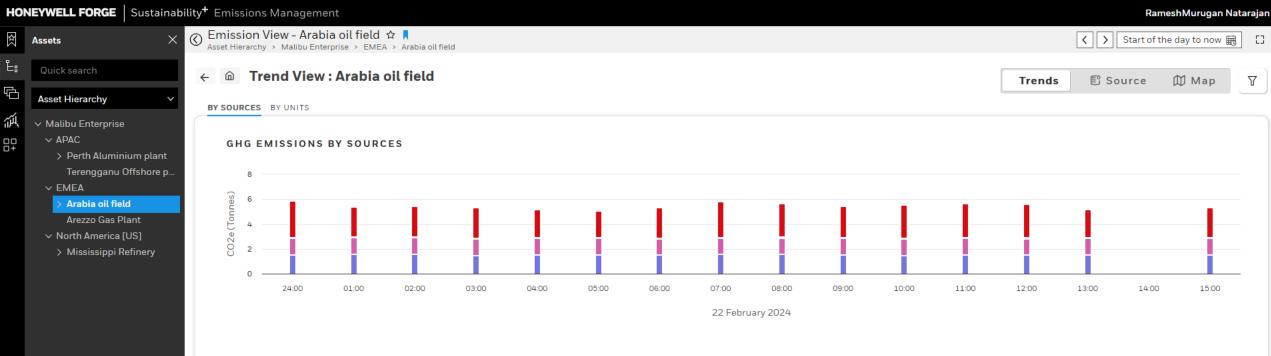


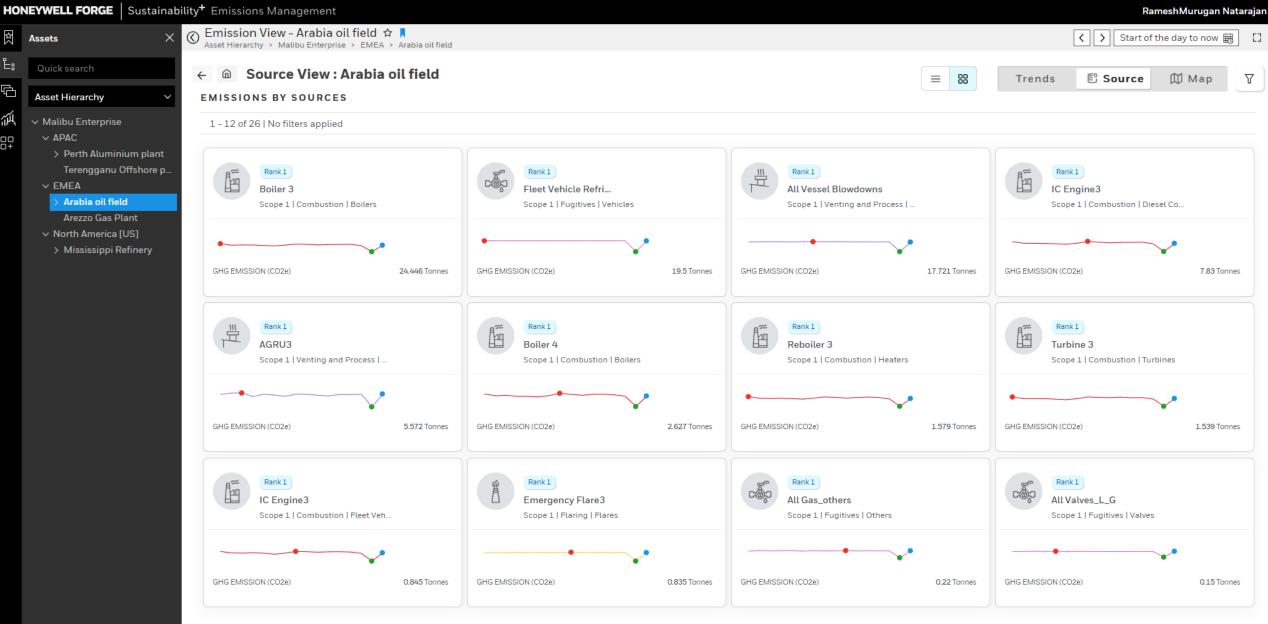

HONEYWELL FORGE SUSTAINABILITY+ EMISSIONS MANAGEMENT


Enabling high-integrity IT/OT emissions data and insights to reduce emissions intensity, improve energy efficiency and optimize decarbonization pathways for the business transformation of key processes.


HONEYWELL


FORGE




Site Visuals: Monitor the overall GHG emissions by categories, intensity and top 3 critical emission sources.

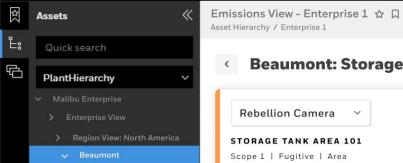
Combustion	Flaring	Fugitives	Venting and Process
SCOPE1 个			

EMISSIONS SOURCES	GHG EMISSIONS (CO2e) (TONNES)	METHANE (CH4) (TONNES)	CARBON DIOXIDE (CO2) (TONNES)	NITROUS OXIDE (N2O) (TONNES)	FLUORO CARBONS (HFC) (TONNES)
Scope 1	82.287	0.998	37.702	0	0.015
> Flaring	0.835	0	0.758	0	0
> Venting and Process	23.526	0.646	7.386	0	0
> Fugitives	19.905	0.016	0	0	0.015
> Combustion	38.021	0.337	29.558	0	0
			Site Visu	als: Trend and Table	view of emissions by

Site Visuals: Trend and Table view of emissions by sources and gases at granular level.

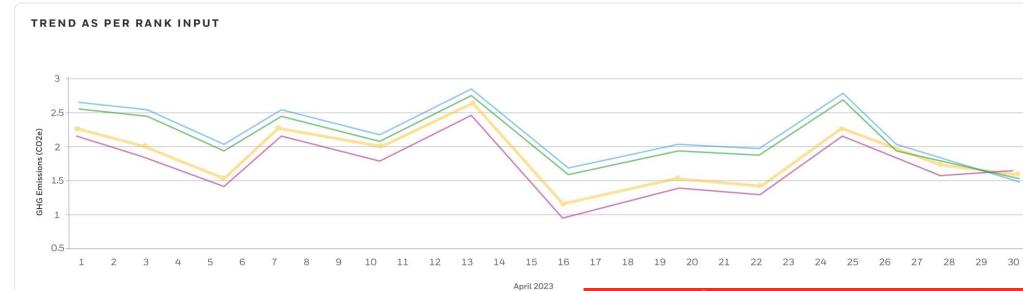
1 2 3 << < > >>

Emissions Source Visuals: Each tile represents emissions source and its trend.


25

Ŀ

G


彽

HONEYWELL FORGE	SUSTAINABILITY	EMISSIONS MANAGEMENT
-----------------	----------------	----------------------

- 🗸 Texas
- 🗸 🛛 Baton Rouge

< Beaumont: Storage Ta	nk Area 101			
Rebellion Camera v STORAGE TANK AREA 101	555	CONTRIBUTION OF STORAGE	TANK AREA 101 (TONNES)	1.45
Scope 1 Fugitive Area 1.45 Tonnes ACTUAL GHG EMISSIONS		SCOPE 1 Tonnes	FUGITIVE TONNES	STORAGE TANK AREA 101 Tonnes

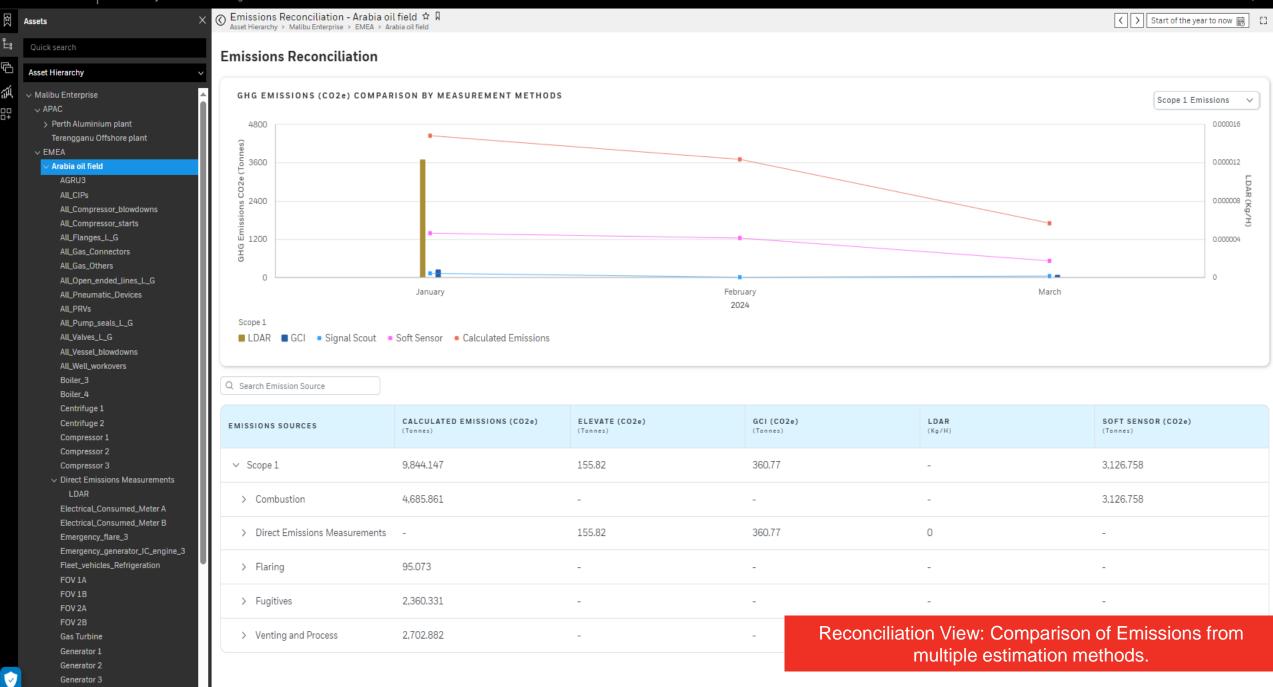
🖗 Signal Scout

Rebellion Camera

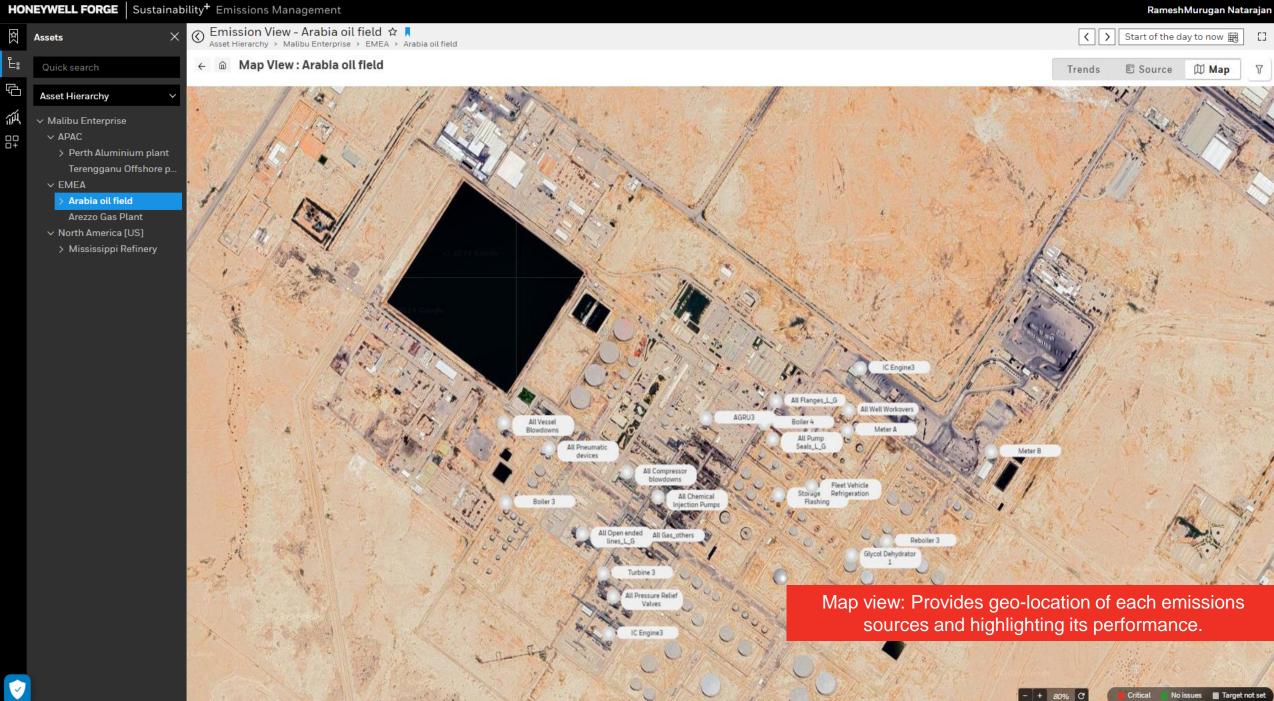
Soft Sensor

Ø Meter

Emissions Source Detail Visuals: Provides trend of multiple emissions estimation methods that can support Reconciliation between measurement methods.


< > YTD

EMISSIONS SOURCES	GHG EMISSIONS (CO2e)	CARBON DIOXIDE (CO2)	METHANE (CH4)	NITROUS OXIDE (N2O)	FLUOROCARBONS (FCs)
	(Tonnes)	(Tonnes)	(tonnes)	(Tonnes)	(Tonnes)
Storage Tank Area 201	1.45	_	0.05	<u> </u>	-


Ø

27

Ħ

Generator 3 Glycol_Dehydrator

Honeywell Connected Plant

Assets

Εş

Asset Hierarchy

> Arabia oil field1

- > Assetranjan10
- > Efls_Asset_Enterprise
- > Enterprise 1
- > Malibu
- Malibu Enterprise
- > APAC
- ✓ EMEA
- Arabia oil field AGRU3
 - AIL_CIPs
- Direct Emissions Measurements > GCI Cameras
 - LDAR

> Signal Scout

Electrical_Consumed_Meter A Electrical_Consumed_Meter B Emergency_flare_3 Emergency_generator_IC_engi... FLARE M1 FLARE M2 All_Vessel_blowdowns All_Well_workovers Boiler_3 Boiler_4 **CDU Tank Bottom**

0	Emission View - Signal Scout 🌣 🖟 Asset Hierarchy > > Direct Emissions Measurements		
0	Asset Hierarchy > > Direct Emissions Measurements	>	Signal Scout

🗧 🏛 Signal Scout View: Arabia oil field

DETECTED LEAKS (16) @ ≡ Q Search by Leak Name +11

1-10 of 16 No filters applied

æ

ARABIA OIL FIELD LEAK 0 0 Kg/h

3/11/2024, 9:41:44 AM

ARABIA OIL FIELD LEAK 15 32.232 Kg/h 2/25/2024, 3:00:45 PM

ARABIA OIL FIELD LEAK 14 16.343 Kg/h 2/22/2024, 3:00:45 PM

ARABIA OIL FIELD LEAK 13 25.435 Kg/h 2/22/2024, 3:00:45 PM

ARABIA OIL FIELD LEAK 12 35.546 Kg/h

2/22/2024, 3:00:45 PM

ARABIA OIL FIELD LEAK 11

20.547 Kg/h

2/21/2024, 3:00:45 PM

< 1 2 >

e ARABIA OI	L FIELD LEAK 1 ×
Gas Type:	CH4
Leak Rate:	33.18 Kg/h
Test Area:	462.84 m ²
Detected On:	2/13/2024, 9:51:44 AM

View Trend

(@)

Direct Measurement view: Leak detection from Signal Scout sensor.

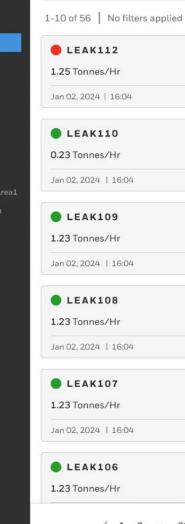
✓ > Start of the year to now → □

HONEYWELL FORGE | Sustainability⁺ Emissions Management

4

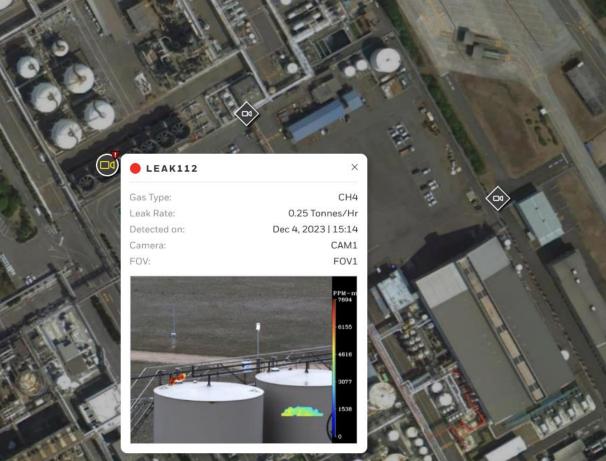
Emissions View - Site A 🕁 🛛 Asset Hierarchy / Malibu Enterprise / Site A / Direct Measurements / GCI Camera

÷ ÷

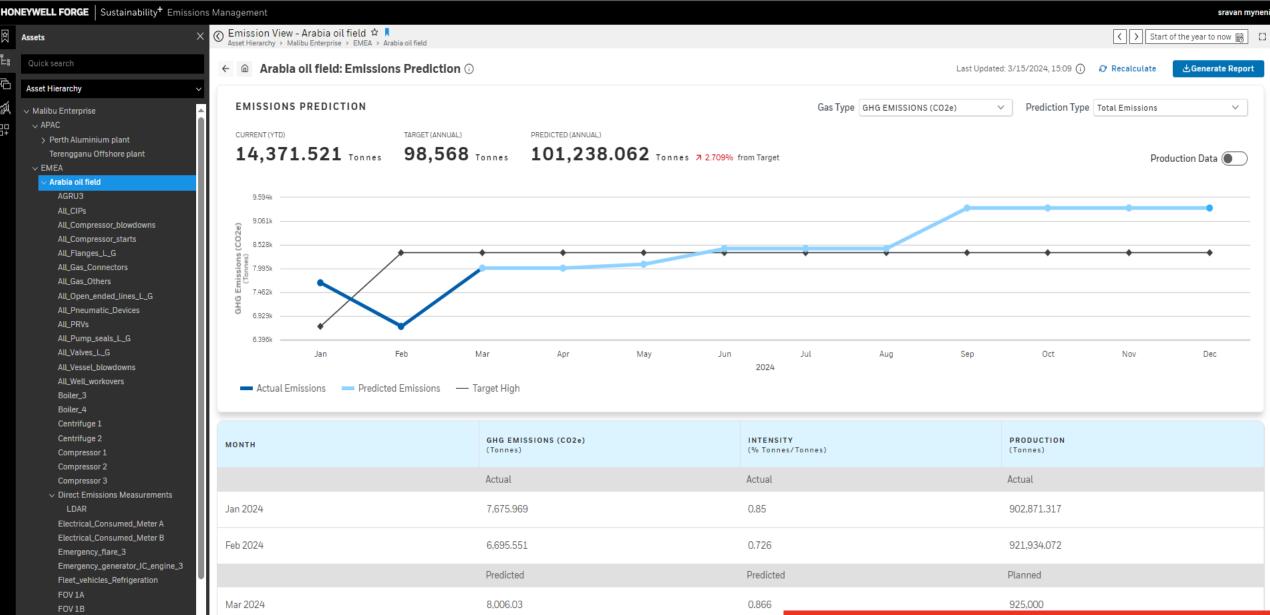

X > YTD

₽ D

個


Assets

PlantHierarchy


GCI Camera View: Site A ∞≡ **DETECTED LEAKS (56)** Q Search by Leak ID +†+

< 1 2 ... 20 >

Direct Measurement view: Leak detection from Rebellion Gas Cloud Imaging Camera.

Assets X (C Energy Management - Arabi Asset Hierarchy > Malibu Enterprise > E	a oil field ☆ 📕 EMEA > Arabia oil field				✓ Start of the month to now ∰
Quick search	Energy Management					
Asset Hierarchy Malibu Enterprise APAC Perth Aluminium plant Terengganu Offshore plant VEMEA		N GHG EMISS AL (ММВТИ) 375К 4.002К	SIONS (CO2e) Tonnes	ENERGY SAVINGS/LOSS	5	EMISSIONS AVOIDED/EXCEEDED
 Arabia oil field Arezzo Gas Plant North America [US] Mississippi Refinery 	Q Search Asset	()				
	EMISSION SOURCES	TARGET ENERGY CONSUMPTION (MMBTU)	ACTUAL ENERGY CONSUMPTION (MMBTU)	GHG EMISSIONS (CO2e) (Tonnes)	ENERGY SAVINGS (MMBTU)	/LOSS EMISSIONS AVOIDED/EXCEEDED (Tonnes)
	> VDU	835.200	1294.200	936.270	• -459	99.989
	> Seperators	1080.000	519.400	515.800	560.6	• -102.671
	СРР	759.600	779.100	760.300	-19.5	• 11.051
	> Generators	756.000	781.400	762.100	-25.4	• 11.129
	🗸 сри	3240.000	1790.400	1797.600	1,449.6	-103.469
	Boilers	1728.000	519.600			nt: Scope 2 drilldown of each highlighting the deviations.
	Boiler 4 View Details	44.000	260.800	261.800	-116.8	36.481
	Boiler 3 🚦	1440.000	261.700	260.100	• 1,178.3	-113.08
	> Turbines	36.000	510.900	509.900	-474.9	94.828
	> Cooling Towers	1440.000	507.800	517.900	932.2	-173.869

0.866

0.87

0.889

8,006.03

8,092.816

8,444,637

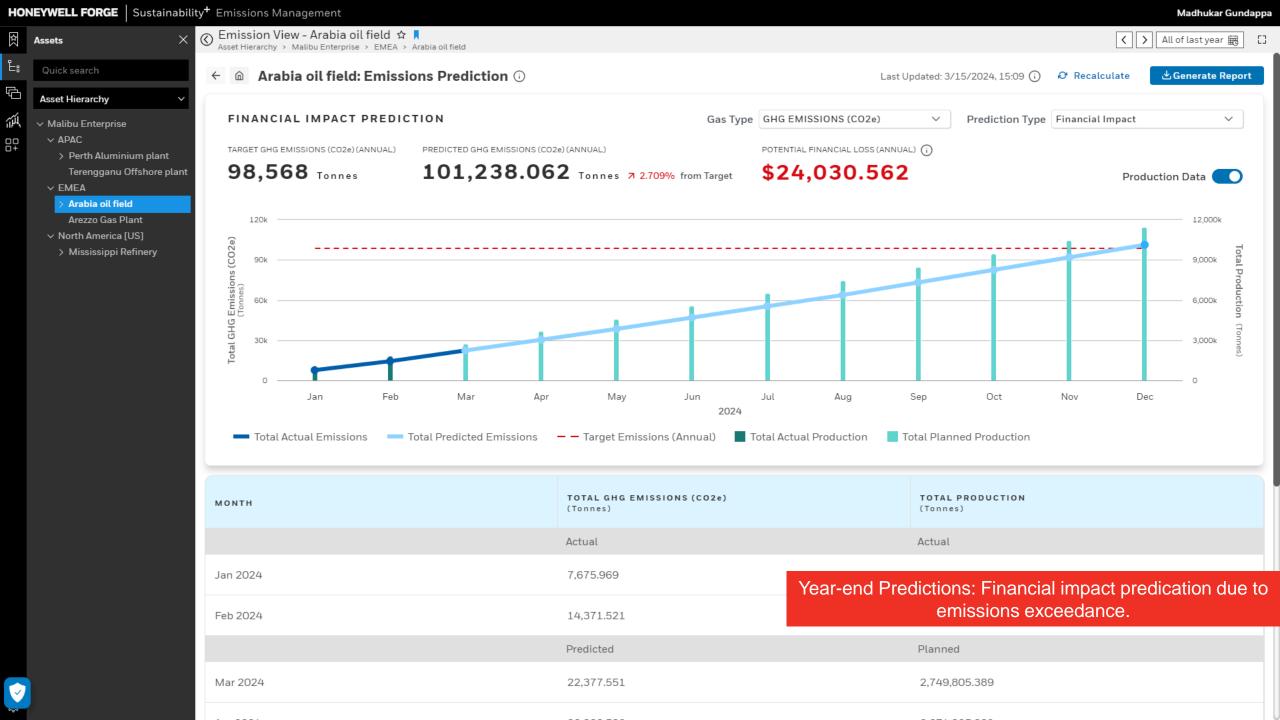
Year-end Predictions: Absolute Emissions Prediction based on the historical data and production plan.

930,000

950,000

9

FOV 2A


FOV 2B

Gas Turbine Generator 1

Generator 2 Generator 3 Glycol_Dehydrator Apr 2024

May 2024

Jun 2024

HONEYWELL FORGE Sustainability⁺ Emissions Management

Assets

Ľ:

Û

讽

All_Pump_seals_L_G

All_Valves_L_G

All_Vessel_blowdowns All_Well_workovers

Boiler_3

- Boiler_4
- Centrifuge 1
- Centrifuge 2
- Compressor 1
- Compressor 2
- Compressor 3 V Direct Emissions Measurements

LDAR

Ø

Electrical_Consumed_Meter A Electrical_Consumed_Meter B Emergency_flare_3 Emergency_generator_IC_engine_3 Fleet_vehicles_Refrigeration FOV 1A FOV 1B FOV 2A FOV 2B Gas Turbine Generator 1 Generator 2 Generator 3

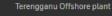
Glycol_Dehydrator

← LDAR VIEW: Valves

Leak predication: Before and After leak rate from LDAR

HONEYWELL FORGE Sustainability⁺ Emissions Management

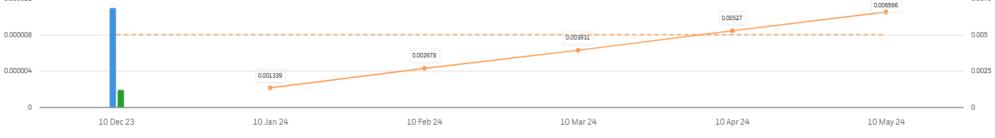
© Emission View - LDAR ☆ 🛛


Asset Hierarchy > ... > Direct Emissions Measurements > LDAR

\sim EMEA

All_Compressor_blowdowns


- All_Compressor_starts
- All_Compressor_so
- All_Flanges_L_G
- All_Gas_Connectors
- All_Gas_Others
- All_Open_ended_lines_L_G
- All_Pneumatic_Devices
- All_PRVs
- All_Pump_seals_L_G
- All_Valves_L_G
- All_Vessel_blowdowns
- All_Well_workovers
- Boiler_3
- Boiler_4
- Centrifuge 1
- Centrifuge 2 Compressor 1
- Compressor 2
- Compressor 3


Direct Emissions Measurements

LDAR

Electrical_Consumed_Meter A Electrical_Consumed_Meter B Emergency_flare_3 Emergency_generator_IC_engine_3 Fleet_vehicles_Refrigeration FOV 1A FOV 1B FOV 2A FOV 2B Gas Turbine Generator 1 Generator 2 Generator 3

Glycol_Dehydrator

📕 Leak Rate Before Repair 🛛 📕 Leak Rate After Repair 🛛 🔶 Total Leak 🦳 - • Total Leak Warning Limit

l	LDAR REPORT DATE	REPAIR DATE	OPERATION TIME (HOURS)	LEAK RATE BEFORE REPAIR (KG/H)	LEAK RATE AFTER REPAIR (KG/H)	COMPONENTS COVERED	ACTION
l	05 Jan 24	10 Dec 23	720	0.000011	0.000002	12 of 50	🛃 View Curated Report
l	21 May 23	16 May 23	720	0.000011	0.000002	12 of 50	🛃 View Curated Report

Leak predication: Enable users to plan for LDAR based on the leak prediction.

Operating 24 Hr/Day ∨

Leak Forecast (!)

Compare Emissions

sravan myneni

0.0075

HONEYWELL FORGE	Sustainability+	Emissions Management
-----------------	-----------------	----------------------

Product Carbon Footprint - Site A 🌣 🖓

团	Assets 《	Site A
۳ ¹	Quick search	Emissions View
Ġ		Report
	PlantHierarchy ~	🔓 Energy Management
ē		Emissions Reconciliation
<u>م</u>	✓ Region 1	Market vs Location Base
ļ	> Site A	🔓 Utility Services Consump
	> Site B	Product Carbon Footprin
	> Site D	
	> Site E	
	> Region 2	

Asset Hierarchy / Malibu Enterprise / Region 1 / Site A **Product Carbon Footprint (Cradle to Gate): Product A** ŵ \leftarrow PRODUCT CARBON RAW MATERIAL FOOTPRINT **PRODUCTION FOOTPRINT** TRANSPORT FOOTPRINT FOOTPRINT 50.29 Kg CO2e/Kg 73.8% **30.12** Kg CO2e/Kg **7 3.2 % 10.63** Kg CO2e/Kg **72.8%** 9.54 Kg CO2e/Kg 71.7% **PRODUCT CARBON FOOTPRINT** .lı ≼ **View Details** Process Unit 1 Footprint 7.52 Emissions Footprint 22.63 Production Footprint Process Unit 2 Footprint 30.12 7.52 Process Unit 3 Footprint 7.52 Energy Consumption Footprint Process Unit 4 Footprint 7.49 7.52 RM1 Footprint Product A Carbon Footprint Raw Material Footprint 3.11 50.29 10.63 RM2 Footprint 4.17 RM3 Footprint 3.35 Transport Footprint 9.54 Product Carbon Footprint: Sankey diagram

representation for the carbon footprint.

Doe John

₿

< > YTD

Ø

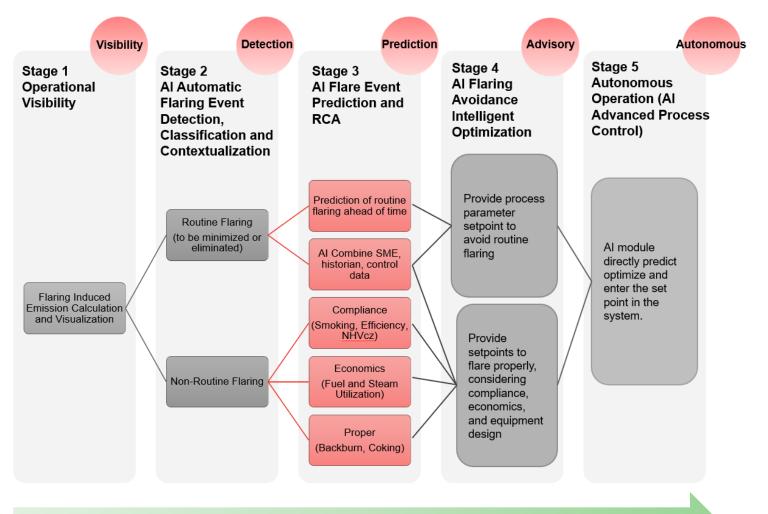
函	Assets	«	Site A
ĥ	Quick search		Emissions View
ß			Report
	PlantHierarchy	Y	🗎 Energy Management
í.			Emissions Reconciliati
<u>ا</u> ال	✓ Region 1		Market vs Location Bas
	> Site A		🗎 Utility Services Consur
	> Site B		Product Carbon Footpr
	> Site D		
	> Site E		
	> Region 2		

Product Carbon Footprint - Site A ☆ □ Asset Hierarchy / Malibu Enterprise / Region 1 / Site A

 \leftarrow

Product Carbon Footprint (Cradle to Gate): Product A

Production Footprint Raw Material Footprint Transport Footprint

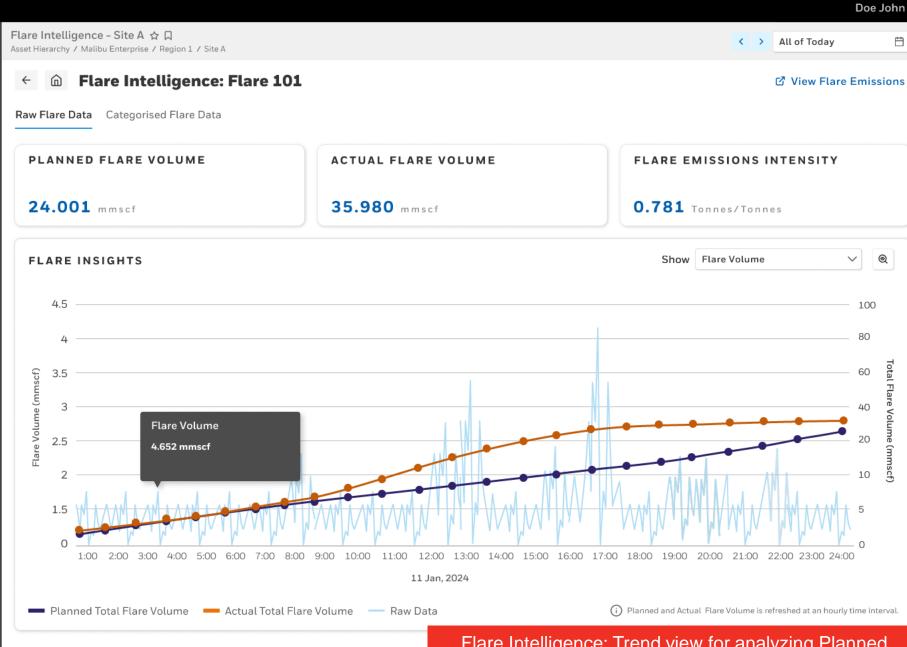


Doe John

₿

< > YTD

FLARE INTELLIGENCE



Customer journey to fully autonomous Operation

Honeywell Confidential - © 2024 by Honeywell International Inc. All rights reserved.



HONEYWELL FORGE Sustainability ⁺ Emissions Management							
ф Х	Assets	*	Site A	× Flare			
ĥ	Quick search		Emissions View	÷			
þ	PlantHierarchy	~	Report Energy Management	×.			
iii iii			Emissions Reconciliation	Raw	/		
<u>ا</u> ال	✓ Region 1		Market vs Location Base	d Emis			
	> Site A		🖺 Utility Services Consum	ption P	PL		
	Flare 101		Flare Intelligence				
	Flare 102				2		
	Flare 103						
	Flare 104						
	Flare 105				1		
	Flare 106						
	Flare 107						
	Flare 108						
	Flare 109						
	Flare 110						
	Flare 111						
	Flare 112				sct)		
	> Site B				E		
				· · · ·	ne (
	> Site D				olur		
	> Site E				Flare Volume (mmscf)		
	> Region 2			ī	Fla		

Flare Intelligence: Trend view for analyzing Planned (allowable) flare volume vs Actual.

HONEYWELL FORGE Sustainability ⁺ Emissions Management								
ক্র	Assets	«	Site A	× Flare Intelligence Asset Hierarchy / Malib				
°.Li	Quick search		Emissions View Report	← ŵ Fla				
þ	PlantHierarchy	~	Energy Management					
			Emissions Reconciliation	Raw Flare Data				
Ē	✓ Region 1		🗎 Market vs Location Based Em	is				
J	> Site A		Utility Services Consumption	ROUTINE F				
	Flare 101		Flare Intelligence					
	Flare 102			26.313				
	Flare 103			20.313				
	Flare 104							
	Flare 105							
	Flare 106			FLARE INS				
	Flare 107							
	Flare 108			4.5				
	Flare 109							
	Flare 110			4				
	Flare 111							
	Flare 112			fg 3.5 —				
	> Site B			E E				
	> Site C) З —				
	> Site D							
	> Site E			> 2.5 —				
	> Region 2			ت ت				
				1.5				
				1.0				
				0				
				1:00				

11 Jan, 2024

Routine Flare Volume Non Routine Flare Volume Safety Flare Volume

6:00 7:00 8:00

2:00 3:00 4:00 5:00

Flare Intelligence: Segregation of flare volume into routine, non-routine and safety.

9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 24:00

HONEYWELL FORGE Sustainability ⁺ Emissions Management								
と	Assets	«	Site A	×	Fla			
ĥ	Quick search		Emissions View					
Ð.	PlantHierarchy	~	🗎 Report 🗎 Energy Management					
í.			Emissions Reconciliation		R			
<u>ا</u> ت	✓ Region 1		Market vs Location Based Er	nis				
	> Site A		Utility Services Consumption	n				
	Flare 101		Flare Intelligence					
	Flare 102							
	Flare 103							
	Flare 104							
	Flare 105							
	Flare 106							
	Flare 107							
	Flare 108							
	Flare 109							
	Flare 110							
	Flare 111 Flare 112							
	> Site B							
	> Site C							
	> Site D							
	> Site E							
	> Region 2							

lare Intelligence - Site A 🕁 Д All of Today Ħ set Hierarchy / Malibu Enterprise / Region 1 / Site A Flare Intelligence: Flare 101 \leftarrow ඛ View Flare Emissions Raw Flare Data Categorised Flare Data ROUTINE FLARE VOLUME NON-ROUTINE FLARE VOLUME SAFETY FLARE VOLUME TOTAL AVG TOTAL AVG TOTAL AVG 26.313 mmscf 5.315 mmscf 4.352 mmscf 1.152 mmscf 2.313 mmscf 4.352 mmscf ılı ≡ FLARE INSIGHTS Q Search ∇ 🗄 Download 17-21 of 27 No filters applied HOUR FLARE VOLUME FLARE CATEGORY SUB-CATEGORY COMMENT ρ Jan 11 2023 | 17:00 17.012 ROUTINE NA Flaring of gas with volatile o.. 🔨 ρ Jan 11 2023 | 17:00 17.012 SAFETY Flaring of gas with volatile organic compounds Jan 11 2023 | 18:00 18.012 ROUTINE Plant/field startup flaring. Facility shutdown startup flaring. Jan 11 2023 | 19:00 19.012 ROUTINE Flaring of gas with H2S. Safety testing-related flaring. ρ Jan 11 2023 | 20:00 20.012 ROUTINE NA Flare Intelligence: Sub-categorization of flare based on Jan 11 2023 | 21:00 21.012 ROUTINE WBZRF.

Doe John

1 2 3 4 5 >

<

FLARE DESTRUCTION EFFICIENCY PREDICTION

- Flare Efficiency estimates using historical operating data and matched operating data. First principles models to cover the whole flare stack operating condition ranges.
- 2. Operating data variables
 - a) Flare stack configuration
 - b) Flare gas flow and composition
 - c) Assisted Steam and Assisted Air flows
 - d) Wind Speed
 - e) Hydrocarbon Destructive Efficiency (DRE)
- Using AI/ML to include Assisted Steam and Assisted Air flow variables in OGMP DRE equation as these two variables give significant impact in DRE value

ONSHORE PLANT - USE CASE

· 🗐 + 🗸

UNISIM dynamic model is used to estimate individual flare volume and composition

PFD - Case (Main) 1 M 🖻 H 🛤 🔎 A 🗛 🦻 🏶 🖁 Synamic P/F Specs \sim 7mins x 5 real time factor = \sim 35 mins Overall Emissions (CO2e/Yr) - 0 X 8525 (kPa) **Operation has roughly** ⊸7805 ∍5000 (kPa) 35 mins to react before the flare reaches the •4030 maximum volume for a 2674 given process upset 1815 1620 1825 1630 1635 1610 Minutes Honeywell Confidential - © 2024 by Honeywell International Inc. All rights reserved.

WHY HONEYWELL INDUSTRY & TECHNOLOGY AGNOSTIC

Honeywell's enterprise level end-to-end Emissions Management suite provides a harmonizing digital backbone integrating data from multiple disparate sources into a single system of record designed to help you measure, monitor, report and reduce your emissions.

MEASURE

Honeywell

Rebellion Gas

Cloud Imaging

Automated Near Real-Time Emissions Coverage

Third-Party Data

(i.e. satellite, drone/aircraft.

LDAR)

IIoT Sensors

Signal Scout™

Honeywell

Versatilis™

MONITOR & REPORT

Source, Site, Region and Enterprise-Level Trending and Visualization, Analytics, Reporting, Alarming

REDUCTION PROGRAMS, INCLUDING E360, CLOSES THE LOOP

REDUCE

Enable Automated and Manual Emissions Actions

Program

MULTIPLE OUTCOME-BASED PATHWAYS

- Global reach and local resource execution.
- Honeywell has a breadth of solutions, so your decarb pathway always matches your business priorities.

READY NOW, REAL RESULTS

 An end-to-end emission management program, including near real-time measurement, monitoring, analytics, operational efficiency, and energy transition solutions at the scale and speed you expect

UNRIVALED EXPERIENCE AND EXPERTISE

- A century of domain experience of design and optimization in industrials including being a chemical manufacturer.
- Honeywell has the history of delivering results that you can count on.

THANK YOU

N. Ramesh Murugan

rameshmurugan.natarajan@Honeywell.com